میانبر عمران
تحقیق پروژه مقاله پایان نامه

جرثقیل ها

آشنایی در بعضی موارد به ویژه در تونلهای مورب، کشش واگونها در روی خط آهن با استفاده از جرثقیل و کابل انجام می گیرد. برای حمل و نقل واگونها به وسیله جرثقیل می توان از یک یا دو رشته کابل و از یک کابل بی انتها استفاده کرد.
از جرثقیل یک کابله برای بابربری در سطوح شیب دار استفاده می شود. زیرا با این وسیله، فقط می توان واگونها را به طرف جرثقیل کشید و حرکت واگو.نهای خالی، در اثر نیروی وزن انجام می گیرد، در مواردی که در سطوح افقی از این نوع جرثقیل استفاده شود، واگونهای خالی را بایستی به وسلیه دست جا بجا کرد.
اگر جرثقیل دارای دو استوانه و دو رشته کابل باشد، با آن می توان واگونهای پر و خالی را به طور همزمان جابجا کرد. بطوریکه دیده می شود، دستگاه دارای دو استوانه هم محور است و در هر مورد، واگونهای پر به طرف جرثقیل کشیده می شود و واگونهای خالی در اثر وزن خود، به طرف پائین سطح شیبدار حرکت می کنند. با استفاده ائز یک کابل بی انتها، که به دور دو استوانه پیچیده شده است، می توان حرکات واگونها را در روی ریل در سطوح افقی نیز تأمین کرد.
در مواردی که از ذو رشته کابل و یا کابل بی انتها استفاده می شود، تونل حتماً بایستی دارای دو رشته خط آهن باشد که از روی یکی از آنها واگونهای پر و از روی دیگری واگونهای خالی حرکت کنند.
قسمتهای مختلف جرثقیل مهمترین قسمت های جرثقیل عبارت از موتور، جعبه دنده، استوانه، ترمز و کابل است که در زیر به شرح آنها می پردازیم.
الف موتور موتور جرثقیل بسته به موقعیت کاربرد آن، ممکن است از نوع الکتریکی، دیزلی یا هوای فشرده باشد. در معادن زغال حاوی گاز و گرد زغال، از نظر رعایت اصول ایمنی، معمولاً نوع هوای فشرده را به کار می برند. و مجموعه موتور، جعبه دنده و استوانه را روی پی بتونی در محل نصب می کنند. با استفاده از موتورهای الکتریکی ضد جرقه، می توان جرثقیل های برقی را نیز در معادن زغال گازدار به کار برد. بدیهی است در معادن فلزی استفاده از انواع برقی باصرفه تر است.
ب-جعبه دنده از آنجا که معمولاً سرعت موتورها زیاد است، لذا برای کاهش سرعت و امکان انتخاب سرعت های مختلف برای استوانه، از جعبه دنده استفاده می کنند. بدین ترتیب نیروی موتور از طریق جعبه دنده مبه استوانه منتقل می شود.
ج-استوانه-استوانه قسمتی از دستگاه است که کابل به دور آن پیچیده شده و بدین ترتیب گردش این استوانه باعث کشیده شدن کابل می شود.
د-ترمز-استوانه در دو طرف دارای لبه هائیست که در زیر آن کفشک های ترمز قرار دارد و با فشار دادن اهرم ترمز، کفشک ها به این قسمت از استوانه می چسبد و باعث توقف آن یم شود.
توقف و چرخش جرثقیل توسط یکنفر متصدی انجام می گیرد.
هـ - کابل کابل از جمله مهمترین اجزاء جرثقیل است و بایستی به طور دایم مورد بررسی قرار گیرد.
کابل از مفتول های فولادی که به یکدیگر پیچیده شده اند تشکیل می شود. برای رعایت اصول ایمنی، کابل ها را بایستی مرتباً بررسی و در صورتیکه دارای زدگی باشد، آنها را تعویض کرد.
تأسیسات ویژه خط جرثقیل برای اینکه ضمن کار جرثقیل، کابل به ریل و تراورس مالیده نشود و از بین نرود، در فواصل لازم بایستی تعداد قرقره های هدایت کننده در سطح خط آهن نصب کرد، همچنین در مواردی که ریل خمیده باشد، برای جلوگیری از سایش کابل به دیوارها، از قرقره های هرزگرد استفاده می کنند.
جرثقیل های برقی هیدرولیکی امروزه برای استفاده در قسمتهای مختلف معدن، جرثقیل هایی ساخته شده است که با یک موتور هیدرولیکی کوچک کار می کند و این موتور هیدرولیکی، خود به وسیله موتور الکتریکی تغذیه می شود.
این دستگاه سبک و قابل حمل و نقل است و در ضمن قدرت زیادی دارد و به آسانی می توان آنرا جابجا کرد. از این دستگاه علاوه بر حمل و نقل در تونلهای مورب، در نقاط دیگری از معدن نیز می توان استفاده کرد که موارد استعمال آن به طور ساده در شکل 20 نشان داده شده است.
 
دکل ها
در معادنی که به وسیله چاه گشایش یافته اند، باربری در چاه، آخرین مرحله باربری در داخل معدن را تشکیل می دهد.
بطوریکه در مبحث روشهای استخراج خواهیم دید، پس از حفر چاه، در افق های مختلف، اقدام به حفر تونل می کنند و بدین ترتیب، طبقات مختلف معدن را احداث می نمایند.
محل تلاقی تونل ها با چاه با به نام پذیرشگاه می خوانند و در این نقاط، مواد موجود در واگونها یا نوار باربری، به داخل قفس های چاه می ریزد (یا اینکه واگونها مستقیماً واترد این قفس ها می شوند) و توسط آسانسور به بالا کشیده یم شود. در بالای دهانه چاه مواد از درون قفسها به داخل بونکرهای بیرون معدن تخلیه می شود و از درون آن به داخل کامیونهای معدنی ریخته شده و توسط آنها به کارخانه کانه آرائی حمل می شود.
وسائل حمل و نقل در چاه مهمترین وسائیل جمل و نقل در چاه، دکل، جرثقیل، کابل و قفس است که در زیر به شرح آنها می پردازیم:
الف-دکل-دکل، ساختمان برج مانندی است که در بالای چاه نصب می شود. دکل ممکن است از قطعات فولادی با نیمرخ مخصوص و یا از بتن مسلح ساخته شود.
دکل بتنی معمولاً در مواردی به کار می رود که مدت بهره برداری از چاه طولانی و میزان حمل و نقل روزانه نیز زیاد باشد. دکلهای بلند را معمولاً از فولاد می سازند.
در بالای دکل، تعدادی قرقره وجود دارد که کابل جرثقیل از دور آنها عبور می کنند و بدینوسیله حرکت قفس ها را در داخل چاه ممکن می سازد. قرقره ها معمولاً یکپارچه ساخته می شود و در بعضی موارد از قطعات مجزائی که به وسیله پیچ به یکدیگر متصل شده اند تشکیل می شود.
قطر قرقره بستگی به مشخصات باربری دارد و در بعضی موارد ممکن است به 4 الی 5 متر نیز برسد.
ب-جرثقیل-ساختمان جرثقیل چاه نیز مشابه جرثقیل هائیست که قبلاً بررسی شد و قسمت های اصلی آن را موتور، جعبه دنده، استوانه و ترمز تشکیل می دهد. جرثقیل را در ساختمان مخصوصی در کنار چاه نصب کرده و برای هدایت آن، وسایل کنترل نصب می کنند.
معمولاً هر جرثقیل دارای عمق نمائی است که در هر لحظه موقعیت قفس ها را در داخل چاه نشان می دهد. همچنین وسیله دیگری وجود دارد که به طور خودکار قسمتهائی را که بایستی سرعت جرثقیل در آنجا کم شود نشان می دهد. از جمله وسایل دیگر جرثقیل می توان سرعت سنج آنرا نام برد.
ج-کابل ساختمان کابل این نوع جرثقیل ها نیز مشابه آنهائیست که قبلاً بررسی شد و با توجه به اهمیتی که کابل از نظر ایمنی دارد، همواره بایستی مورد بررسی دقیق قرار گیرد. اصولاً پس از زمان معینی، کابل جرثقیل را ولو اینکه سالم باشد، تعویض می کنند.
د-قفس-قفس وسیله ایست که کابل های جرثقیل به سقف آن متصل است و به وسیله آن مواد معدنی و افراد حمل و نقل می شوند.
قفس در انواع مختلف ساخته می شود. اگر بخواهند مستقیماً واگونها را در داخل قفی حمل کنند، در کف آن رسل نصب کرده و بسته به ظرفیت قفس، یک یا دو واگون را به داخل آن هدایت می کنند و آنرا بالا می کشند.
برای حمل مواد معدنی، قفس های مخصوصی به نام اسکیپ وجود دارد. مواد معدنی از بالا به داخل این اسکیپ ها ریخته شده و برای تخلیه آن، دری وجود دارد که با باز کردن آن، مواد از زیر آن تخلیه می شود.
برای اینکه قفس ها با نیروی کمتری کشیده شود، معمولاً دو قفس به وسیله کابل به یکدیگر مربوط اند و با بالا رفتن یکی، دیگری پائین می آید و بدین ترتیب وزن خود قفس و واگونها خنثی شده و برای حرکت دادن قفس نیروی کمتری لازم می شود.
برای رفت و آمد در داخل چاه قفس های مخصوصی وجود دارد. در بعضی موارد از قفس هائی که برای حمل واگونها ساخته شده، برای رفت و آمد کارکنان نیز استفاده می شود.
نحوه باربری در داخل چاه در مواردی که واگون های جاوی مواد معدنی مستقیماً در داخل قفس ها قرار می گیرند، در کنار قفس یک خط رابط وجود دارد که در پذیرشگاهها آنها را به حالت افقی قرار می دهند. واگونها پس از عبور از روی آن، در داخل قفس جای می گیرند. در بالای چاه نیز به کمک این خط ربط، واگونهای خالی را به داخل قفس می فرستند و واگونهای پر را از طرف دیگر خارج می کنند. برای اینکه حرکت واگونها به هنگام ورود و خروج از قفس به راحتی انجام شود، وسایل مخصوصی موسوم به کشنده واگون تعبیه می کنند که واگونها را به طرف قفس می راند.
در مواقعی که حمل مواد مهدنی به کمک اسکیپ انجام می گیرد، در پذیرشگاه، بونکر مخصوصی احداث می کنند که مواد معدنی از داخل واگونها به درون آن تخلیه می شود. در سر چاه نیز مواد داخل اسکیپ به درون بونکر دیگری تخلیه می شود و به وسیله این بونکر و با استفاده از یک نوار نقاله، می توان آنرا در کامینوهای معدنی بارگیری کرد.
 
پ-باربری ریلی در راه مورب
ماده 238-باربری با واکن در راه مورب باید حتماً به وسیله کابل انجام شود. چرخ چاه دستگاه بابربری باید بطور محکم و در محل مناسب در بالای راه مورب نصب شده باشد.
ماده 239-در راه مورب در صورت خروج واگن از خط باید پس از حصول اطمینان از بسته بودن ترمز چرخ چاه واگن را از بالا وارد راه مورب کرده و به کمک چرخ چاه دستگاه باربری باید بطور محکم و در محل مناسب در بالای راه مورب نصب شده باشد. و به کمک چرخ چاه دوباره روی خط قرار داد. شروع مجدد کار باید پس از اطمینان از این که افراد در محل های امنی قرار گرفته اند انجام گیرد.
ماده 240-چرخ چاه باید دارای ترمزی باشد که در حال توقف بسته بماند و متصدی آن نباید به هیچ عنوان بدون این که چرخ چاه را از منبع انرژی مجزا کرده باشد محل خدمت ترک را ترک نماید.
ماده 241-پذیرگاه بالایی راه مورب باید دارای نرده مناسبی باشد که مانع از حرکت خودبخود واگنها به راه مورب گردد. بازکردن نرده باید بعد از حصول اطمینان از این که واگنها به کابل بسته شده انجام گیرد.
ماده 242-بین پذیرگاهها باید وسیله تبادل علائم وجود داشته باشد.
ماده 243-در گالریهای شیب دار، هنگام کار دستگاههای باربری (مانند جرثقیل و غیره) نزدیک شدن افراد متفرقه ای که در کار دستگاهها دخالتی ندارند به محوطه ای که در آنجا واگن ها از سیم بکسل یا زنجیر جدا و تخلیه می گردند ممنوع است و به این منظور باید در محل فوق الذکر تابلوی مخصوص نصب نمایند.
ماده 244-برای واگن ها و شاسی هایی که ناچار به توقف در سطح شیب دار گالری می باشند پیش بینی موانع ایمنی و اتصال مستحکم آنها به سیم بکسل الزامی است.
ماده 245-حمل مواد معدنی در معادن بوسیله سطل دستی و کوله بار و امثال آم ممنوع است.
 ت-باربری در چاه
ماده 246-دهانه چاه بادی در تمام ساعات کار بقدر کافی روشن و دارای نرده مجهز به درهای مناسب باشد.
ماده 247-اگر عمق چاه به اندازه ای باشد که ارتباط مستقیم بین متصدیان پذیرگاه هیا مختلف چاه به وسیله صدای افراد بطور واضح برقرار نشود باید این ارتباط به وسیله علائم زنگ دار برقرار گردد.
تبصره-در چاه هایی که از وسایل حمل و نقل برای رفت و آمد کارگران استفاده یم شود علاوه بر علائم ارتباطی زنگ دار باید بین متصدیان تمام پذیرگاه ها و متصدی چرخ چاه ارتباط تلفنی نیز برقرار باشد.
ماده 248-تمام قسمتهای مربوط به دستگاه باربری در چاه از قبیل کابل، ماشین ها، ترمز ها و پاراشوت ها باید همه روزه بازرسی شوند و هر هفته یکمرتبه دستگاه های ایمنی مربوطه (پاراشوت ترمز) آزمایش گردند و همچنین هر ماه یک مرتبه قسمت های حساس از قبیل اتصالی ها و قرقره ها از وجود روغن اضافی پاک شوند.
ماده 249-چرخ چاه باید مجهز به عمق نمایی باشد که حین عبور وسیله حمل و نقل از طبقات مختلف معدن زنگ اخباری را به صدات درآورد.
ماده 250-عمق نما باید هر بار که برای عمق هالی مختلف میزان میشود، آزمایش گردد.
ماده 251-کلیه وسایل باربری چاه ها باید به وسیله مسئول مربوطه هر هفته بازدید و نتیجه در دفتر مخصوص ثبت گردد. در صورت مشاهده نقص باید مراتب به طور کتبی به مسئول ایمنی و مسئول معدن گزارش شود تا نسبت به رفع آن اقدام گردد.
ماده 252-سرعت حرکت وسیله حمل و نقل هنگام حمل مسافر نباید از 8 متر در ثانیه تجاوز کند.
ماده 253-در چاه هایی که از چرخ چاه کلاج دار استفاده می شود هر موتور باید دارای ضامنی باشد که بازکردن ترمز و آزادکردن کلاج بطور همزمان امکان داشته باشد.
 
ث-بالابرها
ماده 254-بالابرهای دائم باید دارای ویژگی های زیر باشند:
 
راهنمای سرمایه گذاری در معادن ایران
-هدایت شده باشد
-سقوط اشیاء از داخل آنها ممکن نباشد.
-بار در داخل آنها بی حرکت بماند.
ماده 255-بالابرهای مخصوص حمل اشخاص باید دارای سرپناه و پاراشوت بوده و به علاوه دستگاه محرکه آنها مجهز به تنظیم کننده سرعت باشد، پلاک نشان دهنده ظرفیت سرنشین های این وسایل باید بطور آشکار در محل مناسبی نصب گردد. ظرفیت مذکور باید حداکثر برابر یا یک سوم ظرفیت باربری باشد که با این وسایل می توان حمل کرد.
تبصره-در بالابرهای جدید به شرط رعایت مسائل ایمنی به تضمین سازنده وجود پاراشوت الزامی نیست.
ماده 256-ماشین های چرخ چاه باید دارای ترمزی باشد که در صورت لزوم بتواند کابل را بی حرکت کند و چرخ چاه دستی باید مجهز به وسیله ای باشد که آنرا از گردش در جهت مخالف بازدارد ضمناً در ماشین های حمل اشخاص در صورت امکان جدا کردن چرخ چاه از موتور، داشتن ضامن ویژه ای به منظور جلوگیری از بروز هرگونه خطر الزامی است.
ماده 257-ماشینهای چرخ چاه باید به دو دستگاه ترمز جداگانه شامل ترمز عادی و ترمز ایمنی که هر یک بطور مستقل قادر به توقف ماشین باشد مجهز گردند کفشک این ترمزها ممکن است مشترک باشد ولی وسایل فرمان آنها باید کاملاً مجزا و در دسترس متصدی ماشین قرار داشته باشد همچنین باید حداقل یکی از ترمزها از نوع وزنه ای بوده تا در صورت قطع نیروی محرکه حداقل یکی از این دو ترمز چرخ چاه را متوقف کند.
ماده 258-در ماشینهایی که دارای جعبه دنده می باشد باید با یکی از ترمزها بتوان مستقیماً چرخ چاه را متوقف کرد.
ماده 259-ترمز ایمنی باید به نحوی باشد که در هر یک از موارد زیر بطور خودکار وارد عمل گردد:
الف-هرگاه اتاقک بالابر از چاه خارج و به قرقره ها نزدیک شود.
ب-هرگاه سرعت حرکت در نزدیکی پذیرگاه مقصد از 5/1 متر در ثانیه کمتر نشود.
ماده 260-باید وسیله ای وجود داشته باشد که هم زمان با بکارافتادن ترمز ایمنی، نیروی محرکه ماشین را بطور خودکار قطع کند.
ماده 261-بالابرهای دائمی که برای حمل اشخاص هم به کار برده می شوند بهتر است مجهز به وسیله نشان دهنده موقعیت اطاقک بالابر در چاه بوده و به علاوه باید بتواند با علامت صدادار نزدیک شدن آن را به پذیرگاه اعلام کند.
ماده 262-ماشینهایی که سرعت حرکت آنها از شش متر در ثانیه بیشتر است باید مجهز به وسایل زیر نیز باشند:
الف-وسیله ای که ترمزها را به نرمی وارد عمل می کند.
ب-وسیله محدود کننده سرعت در حدی که معمولاً عمل می کند.
پ-دستگاه ثبت کننده سرعت
ماده 263-هنگام حمل اشخاص باید علائم مخصوصی در پذیرگاه ها روشن شود و بطور واضح حمل مسافر را اعلام نماید.
 ج-کابل ها (سیم بکسل ها)
ماده 264-جنس کابل باید مناسب با شرایط محیط کار انتخاب شود و در مقابل عواملی از قبیل اسید و غیره مقاوم باشد.
ماده 265-هنگام تحویل گرفتن هر کابل نو باید قطعه ای از آن را (بطور 4 متر) برای آزمایشات مقایسه ای در محلی خشک نگهداری نمود.
ماده 266-میزان مقاومت کابل نو (در مقابل پاره شدن) را هنگام تحویل گرفتن باید از طریق آزمایش خود کابل و یا آزمایش تمام عناصر آن معین و در ضمن میزان افزایش طول کابل را قبل از پاره شدن تعیین نمود و در هر حال باید هر یک از عنصرهای کابل از حیث کشش، خمش و پیچش نیز آزمایش شود.
ماده 267-کابل هایی که علاوه بر بارکشی برای حمل اشخاصی نیز بکار برده می شود باید در سال اول کار هر سه ماه یک بار و در سال بعد هر دو ماه یکبار به اندازه 2 متار از پایین آن بریده و آزمایش شود.
ماده 268-ضریب اطمینان کابل باید حداقل 6 باشد یعنی میزان بار مفید و بار مرده و کل وسیله باربری نباید از یک ششم مقاومت کابل تجاوز کند در صورت افزایش عمق چاه از 500 متر برای هر یکصد متر اضافی می توان یکدهم از این ضریب را کسر کرد و در هر حال وزن مذکور نباید از یک پنجم مقاومت کل کابل تجاوز کند.
تبصره بالابرهای مالشی (نوع کپ) از شمول این ماده مستثنی می گردد. مواردی که ضریب اطمینان این تجهیزات باید برای عمق کمتر از 500 متر 7 و برای بیش از 500 متر 6 در نظر گرفته شود.
ماده 269-مدت استفاده از کابل بالابرهای مخصوص حمل اشخاص نباید از دو سال تجاوز کند.
ماده 270-قبل از بکارگیری کابل نو برای حمل افراد لازم است آزمایشهای ایمنی مطابق دستورالعمل سازنده انجام گیرد. بست ها و اتصال های مربوط به کابل باید دارای مقاومت کافی و مورد نیاز اینگونه وسایل بوده و ضریب اطمینان آنها از ضریب اطمینان کابل کمتر نباشد. مدت به کارگیری آنها نباید از ده سال تجاوز کند.
ماده 271-کلیه بازرشی ها و آزمایش های کابل و وسایل باربری مربوطه باید توسط اشخاص و سازمانهای صلاحیت دار و با روش های فنی معتبر انجام گیرد.
ماده 272-هرگاه پس از هر آزمایش مشاهده شود که تقلیل قابل ملاحظه ای در مقالومت کابل حاصل شده و یا بیش از ده درصد عنصرهای مشهود آن در طول سه گام پاره شده و یا تغییر محسوسی در شکل ظاهری کابل از نظر خوردگی یا سائیدگی یا تقلیل قطر و یا باز شدن پیچش آن حاصل شده باشد، آن کابل باید تعویض گردد.
ماده 273-در هر معدن که باربری از طریق چاه با وسایل بالابر انجام می گیرد بهره بردار موظف است دفتری برای ثبت موارد زیر در سر معدن اختصاص دهد:
الف-نام و نشانی کارخانه سازنده کابل و وسایل مربوطه
ب-مشخصات کابل، نوع سیم های بکاربرده شده و ساختمان آن و نتیجه آزمایش های انجام شده در باره کابل نو و محاسبه مقاومت کل کابل و همچنین آزمایش هایی که بر طبق مقررات مربوطه انجام می شود.
پ-تاریخ شروع استفاده از کابل و نوع باربری آن.
ت-وزن بار مرده کلیه وسایلی که کابل متحمل می شود بانضمام وزن کابل و همچنین حداکثر وزن باری که حمل می شود.
ث-تاریخ و نوع تعمیرات و تاریخ سر و ته کردن کابل
ج-تاریخ و علت خارج کردن کابل از سرویس
چ-مقدار عملکرد کابل در حرکت بطرف پایین و در حرکت بطرف بالا و میزان تن کیلومتر انجام شده.
ماده 274-جابجایی اجسام بلند از طریق بستن این اجسام به یک رشته طناب، کابل یا زنجیر به دلیل خطر لغزن ممنوع است.
ماده 275-دانستن وزن صحیح بار جهت انتخاب زنجیر، کابل یا طناب مناسب ضروری است.
ماده 276-برای کوتاه کردن زنجیر و سیم بکسل ها نباید آنها را گره زد و همچنین بارهای لبه تیز ساخته شده از مواد سخت را باید قبل از تماس با حلقه هیا زنجیر و یا سیم بکسل با حفاظ هایی پوشاند.
ماده 277-هیچگاه نبایستی جرثقیل در فضل بصورت آزاد رها شود. راننده جرثقیل مادام که بار در هوا معلق است نباید محل کار خود را ترک نماید.

پل یک سازه است که برای عبور از موانع فیزیکی از جمله رودخانه ها و دره ها استفاده می شود.پلهای متحرک نیز جهت عبور کشتی ها و قایقهای بلند از زیر آنها ساخته شده است.

تاریخچه پل:
ایجاد گدرگاهها وپلها برای عبور ازدرههاورودخانه ها از قدیمی ترین فعالیتهای بشر است. پلهای قدیمی معمولا ازمصالح موجود در طبیعت مثلچوب وسنگ والیاف گیاهیبه صورت معلق یا با تیرهای حمال ساخته شده اند.پلهای معلق ازکابلهایی از جنس الیاف گیاهی که از دو طرف به تخته سنگها و درختها بسته شده و پلهای باتیر حمال ازتیرهای چوبی که روی آنها با مصالح سنگی پوشیده می شد، ساخته شده اند.
ساخت پلهای سنگی به دوران قبل از رومی هابر می گردد که درخاور میانه و
چین پل های زیادی بدین شکل برپا شده است. دراروپانیز اولینپلهای طاقی را 800 سال قبل از میلاد مسیح، برای عبور از رودخانه ها از جنس مصالح سنگی ساخته اند.اغلب پلهای ساخته شده توسط رومی ها از طاقهای سنگی دایره شکل با پایه های ضخیم تشکیل یافته است.در ایران نیز ساختن پلهای کوچک وبزرگ از زمانهای بسیار قدیم رواج داشته و پل هایی نظیر سی و سه پل، پل خواجو وپل کرخه بیش از 400 سال عمر دارند.

ازقرن یازدهم به بعد روشهای ساختن پلها پیشرفت قابل توجهی نمود و به تدریج استفاده ازدستگاههای فشاری ازمصالح سنگی و آجر باملاتهای مختلف ودستگاههای خمشیاز چوب متداول گردیده و تااوایل قرن بیستم ادامه یافت. شروع قرن بیستم همراه با استفاده وسیع ازپل های فلزی و سپس پلهای بتن مسلح می باشد
از اوایل قرن نوزدهم ساخت پل های معلق، قوسی یا با تیر حمال از
آهن آغاز شد. اولین پل معلق از آهن در سال 1796 به دهانه 21 متر درآمریکاساخته شد، همچنین در سال 1850 یکی ازمهمترین پلهای با تیر حمال از جنس آهن متشکل از دو دهانه 140 متر و دودهانه 70 متری درانگلستان ساخته شد.
طویل ترین پل معلق به طول تقریبی 7 کیلومتر درسانفرانسیسکو ساخته و بزرگترین دهانه معلق به طول تقریبی 1400 متر در انگلیس (روی رودخانه هامبر) طراحی شده اند. در سال های اخیر طرح پلهای ترکه ای فلزی (با کابل مستقیم) نیز برای دهانه های بزرگ مورد توجه قرار گرفته و بعد از نخستین پل که در سال 1955 به دهانه 183 متر در سوئد ساخته شده،پلهای زیادی اجرا شده است.
طبقه بندی پلها:
پلها را می توان ازنقطه نظرهای مختلف طبقه بندی نمود:
·         نوع مقاطع باربر
·         کاربردآیندهو
·         نوع تیرهای حمال


همچنین ببینید
 
·         پل نقال
·         پل بالارو
·         پل چرخان
·         پل دو طبقه
·         پل شناور قایقی
·         پل قوسی
·         پل متحرک
·         پل معلق
·         نگهداریپل
 
پلها از جمله شاه رگهاي حياتي در مواقع بروز سوانح طبيعي هستند، بنابراين جزو سازه‌هاي مهم دسته‌بندي مي‌شوند. در نتيجه براي مقاوم‌سازي آنها در برابر زلزله بايد از روش يا روشهايي استفاده کرد که مورد اعتماد، کارآ و تا حد امکان مقرون به صرفه باشند. يکي از اين روشها که از اوايل قرن حاضر مطرح و در اين اواخر به آن توجه بيشتري شده است ، جدايش پلها توسط سيستم‌هاي لرزه جدايش (SeismisIsolation) مي‌باشد. پلها به دليل خصوصيات ويژه خود، بستر مناسبي براي استفاده از اين سيستم‌ها هستند. در اين راستا کارهاي زيادي چه بصورت تئوري و چه بصورت عملي انجام شده است . پس بهتر ديده شد که ابتدا رفتار ديناميکي پلها مورد مطالعه قرارگرفته، سپس به بررسي نحوه تاثير سيستم‌هاي لرزه جدايش بر رفتار ديناميکي پلها در برابر زلزله پرداخته شود. در پلهاي جدايش يافته، حتي توسط بالشتک‌هاي الاستومري رايج، به علت تغيير محدوده پريودي، نياز به آناليز ديناميکي کاملا محسوس است . در اين راستا سعي گرديده تا ابتدا مدل مناسبي براي بيان رفتار ديناميکي پلها ارائه گردد. پس از انتخاب مدل مناسب ، حالتهاي مختلف قرارگيري جداينده‌ها در سازه پل، مورد بررسي. قرار گرفته است . به دليل فرضيات ابتدايي مبني بر رفتار خطي مصالح و نيز ساده‌سازي تحليل جداينده‌ها، رفتار اين اعضاء در مراحل اوليه بصورت خطي در نظر گرفته شد و تاثير عواملي نظير تغيير سختي عرشه، تغيير سختي پايه‌ها و تغيير سختي بالشتکهاي الاستومري بر روي پلهاي جدايش يافته و جدايش نيافته، مورد بررسي قرار گرفت . پس از اين مرحله با فرض رفتار غيرخطي جداينده‌ها در کنار رفتار خطي اعضاي اصلي سازه، که از فرضيات اساسي بحث لرزه جدايش است ، مقايسه‌اي بين عملکرد جداينده‌هاي متفاوت انجام پذيرفت . بدين ترتيب سه‌گونه کلي رفتار جداينده‌ها بصورت خطي (الاستومرها)، دو خطي (بالشتکهاي سربي لاستيکي) و الاستوپلاستيک کامل (جداينده‌هاي اصطکاکي خالص) مدنظر قرار گرفته است . در انتها به برخي روشهاي طراحي سيستم‌هاي لرزه جدايش براي پلها که در مراجع علمي و آئين‌نامه‌اي موجود بوده‌اند، اشاره شده است . با انجام مراحل بالا و مقايسه نتايج حاصل، موارد زير قابل بيان است : 1 - معادل‌سازي در امر تحليل سازه‌ها، بويژه پل‌ها، نقش بسيار مهمي را ايفا ميکند. 2 - به دليل اهميت پلها به عنوان يکي از شريانهاي حياتي نيروهاي امدادرساني در مواقع بحران، آناليز ديناميکي آنها، بخصوص پلهاي داراي بالشتک‌هاي الاستومري توصيه مي‌گردد. 3 - استفاده از سيستم‌هاي لرزه جدايش غيرخطي، نتايج مطلوبتري را نسبت به سيستم‌هاي لرزه جدايش خطي سبب مي‌گردد که در اين ميان کاربرد بالشتکهاي سربي لاستيکي، عملي‌تر به نظر مي‌رسد. 4 - استفاده از سيستم‌هاي لرزه جدايش به عنوان يک گزينه مطرح براي طراحي پلها در برابر زلزله و نيز تقويت پلها موجود، قابل بيان است
علل اصلی خرابی بسیاری ازپلها  قبل از پایان عمرشان، عدم توجه به معیارهای هیدرولیکی در طراحی، و اجراو نگهداری ازآنهاست. ظرفیت گذرسیلاب از پل پایداریبازه رودخانه در محل احداث پل هدایت جریان نیروهای هیدرو دینامیک جریان آبشستگی و فرسایش در اثر تنگ شدگی و یا ایجاد مانع عواملی هستند که در تعیین جانمایی طول ارتفاع وآرایش پایه و تکیه گاهها و مشخصات هندسی پایه هاوتکیه گاههای پل حائزاهمیت هستند که متأسفانه در کشورمان به مسائل فوق الذکرتوجه کمتری می گردد این مقاله نگاهی اجمالی به نقش مهندسی رودخانه و اهمیت بکارگیری آن در طراحی پلها دارد.
علیرغم استفاده از مصالح و تکنولوژی پیشرفته و صرف هزینه های هنگفت در طراحی و ساخت پل ها هرساله شاهد شکست و یا تخریب پلهای زیادی در دنیاو در کشورمان در اثر وقوع سیلاب هستیم. شکست و تخریب پلها علاوه بر خسارات مالی و گاهی هم جانی راه ارتباطی به نقاط سیل گیر و محتاج کمک رسانی را قطع می کند و خسارتها را دو چندان می نماید.
طبق بررسیهای انجام شده در اکثر موارد علت شکست پلها عبارتند از:
  • عدم برآورد صحیح سیلاب طراحی (Flood Design) و کم بودن ظرفیت عبور سیلاب از دهانه پلها
  • جانمایی (Layout ) نامناسب پلها بدون توجه به مسائل ریخت شناسی (Morphology) رودخانه
  • بر آورد نادرست از عمق شالوده (براساس معیارهای سازه ای و ژئوتکنیکی) بدون توجه به مسأله فرسایش آبشستگی
  • فراهم نکردن تمهیدات لازم برای عبور مناسب جریان از سازه پلها
  • نقصان در حفاظت و نگهداری از پلها
بر اساس آمار و اطلاعات جمع آوری شده از خسارات سیلاب در دوره زمانی سالهای 1331 تا 1375 افزایش تخریب پلها در اثر سیلاب چشمگیر بوده است.

آنچه که مسلم است یکی از عوامل اصلی این تخریبها عدم رعایت مسائل هیدرولیکی و مهندسی رودخانه در طراحی پلها در طی دهه گذشته ( که دوره توسعه سازندگی و پیشرفت بوده است) می باشد و شواهد نشان می دهد که در سالهای اخیر به این مساله توجه کافی نمی گردد. مسلماً عواقب ناشی از عدم رعایت مسائل مهندسی رودخانه در پل سازی جزصرف هزینه های زیادو بی حاصل ثمری نخواهد داشت و لازم است در برنامه های مربوط به پلسازی معیارهای هیدرولیکی در مطالعات طراحی و اجرای پلهامورد توجه قرارگیرند.
تحقیقات انجام شده روی پلها نشان می دهد که علاوه بر عوامل سازه ای و ژئوتکنیکی که در محاسبه ابعاد پلها به کار می روند عوامل هیدرولیکی و اندرکنش سازه پل و رودخانه در تعیین جانمایی طول ارتفاع پایه و تکیه گاهها و حفاظت از پلها نقش اساسی دارند.
جانمایی و راستای قرارگیری پلها
عبور جاده و یا خط راه آهن از روی رودخانه ها محدود به بازه های خاصی از رودخانه هاست که توسط مسیر کلی راه مشخص می گردد علاوه بر آن مسیر کلی راه راستای قرارگیری پل روی رودخانه را نیز تعیین می نماید در حد امکان از احداث پل در بازه های ناپایدار باید اجتناب نمود بازه های ناپایدار بازه هایی از رودخانه هستند که رودخانه در آنها فرسایشی و یا رسوبگذار است.
انتخاب راستای پل عمود بر راستای جریان از وارد آمدن نیروی بیشتر و مورب به تکیه گاهها و پایه های پل جلوگیری می کند همچنین طول پل کاهش می یابد که در کاهش هزینه های کلی طرح بسیار موثر است استفاده از عکسهای هوایی و توپوگرافی بامقیاس مناسب ( 1.50000 تا 1.20000) یکی از راههای مفید برای مطالعه جانمایی و تعیین بهترین مسیر عبور پل از روی رودخانه است.
تعیین طول پلها
به دلیل ملاحظات اقتصادی وسازه ای تاحد ممکن طول پلها را کوتاه در نظر می گیرند اما باید دانست که شکل هندسی شرایط جریان در رودخانه پیوسته در حال تغییر است و کوتاه شده طول پل باعث تمرکز تنش جریان در محدوده احداث پل گردیده وموجب آبشستگی کف و کناره ها می گردد این موضوع در هنگام وقوع سیلاب به حالت بحرانی می رسد و ممکن است باعث تخریب پل گردد بنابر این طول پل باید طوری انتخاب شود که پایداری رودخانه در محدوده احداث پل حفظ گردد بر اساس تحقیقات انجام شده بازه های پایدار رودخانه، بازه هایی هستند که تغییرات چندانی در طول یک یا چند سال نداشته باشند از مفهوم بازه پایدار برای تعیین عرض تعادل رودخانه ها استفاده می گردد عرض تعادل با استفاده از مفاهیم روابط تجربی رژیم روش نیروی برکنش و مفهوم توان جریان استخراج می گردد. روابط رژیم بر اساس معادلات تجربی بین دبی جریان آب و رسوب عمق عرض و شیب رودخانه ها با بستر شنی نشان می دهد.
تعیین ارتفاع پلها
محدودیت های سازه ای و اقتصادی خاکریزهاو جاده های طرفین مسائل کشتیرانی و قایقهای تفریحی و ظرفیت آبگذری مهمترین عوامل تعیین کننده ارتفاع پل می باشند ظرفیت آبگذری پل به حداکثر دبی جریان گفته می شود که پل با اطمینان از خود عبور می دهد این مقدار جریان به هندسه مقطع پل و تکیه گاه ها شکل پایه های پل عرض تنگ شده رودخانه و ارتفاع پل بستگی دارد. با تعیین عرض تعادل رودخانه (یا همان طول پل ) دبی سیلاب طراحی برای محل و شکل مقطع پل و پایه های آن و ارتفاع پل محاسبه می گردد دبی سیلاب طراحی بر اساس اهمیت سازه از نظر ارتباطات تجارت و همچنین ریسک شکست و وارد آمدن خسارت انتخاب می گردد. اغلب دبی طراحی عبور سیلاب برای پلها را با دوره برگشت 50ساله بطور خلاصه می توان گفت برای شرایطی که سطح شالوده بالای بستر باشد، سرعت و اندازه گردابها بستگی به ابعاد و ارتفاع و عرض نسبی پایه نسبت به شالوده دارد یعنی اینکه در این حالت شالوده به عنوان یک عامل بازدارنده، خود باعث تشکیل گردابهای قویتری می گردد که با گرداب حاصل از پایه ترکیب شده و آبشستگی را تشدید می نماید.
در حالت دوم (سطح قانونی شالوده داخل حفره آبشستگی است)سیستم گردابهای ایجاد شده ضعیفتر از حالت اول می باشد و حتی در زماینکه سطح فوقانی شالوده به اندازه کافی به سمت بالا دست گسترش می یابد، گرداب ایجاد شده توسط پایه بر روی سطح شالوده هیچگونه تاثیری در سیستم ایجاد شده توسط پایه ندارد.
باتوجه به موارد فوق الذکر معادلات ارایه شده توسط ریچاردسون نیاز به بازبینی دارد.
انتخاب عمق شالوده پایه ها و به همین ترتیب برای تکیه گاهها با در نظر گرفتن حداکثر آبشستگی و موارد فوق الذکر در مورد پایه های مستطیلی صورت می گیرد.
هدایت جریان
شکل نامنظم رودخانه ها در مقاطع عرضی و در طول ممکن است باعث تغییرات مکانی جریان در رودخانه گردد این موضوع برای احداث پلها و عبور جریان ازمقطع آنها نامطلوب است و باید به نحوی جریان در بالادست پل یکنواخت توزیع شده و به طرف سازه هدایت گردد. این عمل توسط سازه طولی به نام دیوارهای هدایت جریان صورت می گیرد.
در بیشتر موارد مصالح مورد استفاده از رودخانه ای بوده و در قسمت سطحی و پیش بند از حفاظت های سنگچین استفاده می گردد گاهی شکل قرارگیری پل در مسیر رودخانه طوری است که به سادگی نمی توان جانمایی دیوارهای هدایت جریان و طول و مشخصات آنرا محاسبه نمود در این حالت با توجه به اهمیت پروژه پلسازی می توان از مدلهای فیزیکی جهت تعیین مشخصات آن استفاده نمود.
  • در طراحی پلها عوامل هیدرولیکی بسیار زیاد و پیچیده ای در رابطه با اندرکنش سازه پل و رودخانه نظیر ظرفیت آبگذری ،آبشستگی و فرسایش پایداری بازه رودخانه و نیروهای موثر جریان بر پایه ها و تکیه گاهها وجوددارند.
  • طراحی پلها بادر نظر گرفتن اصول مهندسی رودخانه که یکی از عوامل تعین کننده می باشد ممکن است در بسیاری از موارد طراحی سازه ای پل را تحت الشعاع قرارداده و حتی باعث تغییر سیستم باربری سازه پل گردد.
  • در طراحی و ساخت پلها انتخاب جانمایی طول، ارتفاع، شکل تکیه گاهها و پایه هاوعمق شالوده بر اساس مطالعات هیدرولیک جریان و ریخت شناسی در بازه مورد نظر انجام می گردد.
  سال‌هاي اخير شناخت از رفتار سازه‌هاو برآورد نيروهاي وارد بر آنها به خصوص در هنگام زلزله از پيشرفت قابل ملاحظه اي برخورداربوده . جامعه مهندسي كشور ما نيز در بخش مشاوره (طراحي سازه ها) از اين خوان دانش به مدد حضور آيين نامه‌هاي طراحي به روز و ابزارهاي قدرتمند نرم‌افزاري وارداتي،  بهره‌مند شده است. اين موضوع در مراحل اول و دوم مطالعات طراحي به خوبي رخنمون داشته اما در  اجرا متاسفانه فاصله قابل توجهي ميان دانش نيروهاي بخش طراحي با دانش نيروهاي فني دستگاه هاي نظارتي و پيمانكاران به وجودآمده كه خود عامل مهمي در برآورده نشدن كيفيت مناسب در هنگام اجراي سازه‌ها شدهاست. البته اين نكته نيز دور از ذهن نماند كه گاهي اوقات نيز فاصله مذكور به طورمعكوس و به دليل عدم آگاهي بخش طراحي از روش‌ها و ظرفيت‌هاي موجود در صنعت ساخت وساز به طرح‌هايي با قابليت هاي اجرايي پايين ختم گرديده است. مقاله حاضر به چندنكته از هر دو حيطه مورد اشاره در ارتباط با طراحي و اجراي پل‌هاي بتن مسلح ميپردازد
قطع پيوستگي آرماتور دورپيچ در ناحيه تشكيل مفصل خميري در پاي ستون‌هاي پل‌
  براي استهلاك انرژي زلزله آيين نامه ها اجازه مي دهند نواحي از پيش تعيين شده‌اي در سازه‌ها دچار تغيير شكل‌هاي خميري با حفظ سختي، مقاومت و شكل‌پذيري در چرخه هاي رفت و برگشتي امواج زلزله گردند. در پل‌ها اين نواحي بطور معمول در زير سازه (پايه ها) انتخاب مي گردند. بطور خاص در ستون‌هاي بتني پايه‌ها اين تغيير شكل‌ها در پاي ستون‌ها و در طول ناحيه تشكيل مفصل خميري اتفاق مي افتند. به منظور تامين شكل پذيري لازم در مناطق با خطر لرزه‌اي زياد، آيين نامه‌ها همپوشانيoverlap  آرماتورهاي دور پيچ در ناحيه تشكيل مفصل خميري  در پاي ستون را ممنوع كرده‌اند. اما در شكل ذيل مشاهده مي گردد كه جدا از مساله همپوشاني ، پيمانكار براي سهولت اجرا و به دليل عدم آگاهي از اين نكته اصولي، حتي آرماتورهاي دورپيچ را هنگام اجراي فونداسيون درست در پاي ستون قطع نموده است. انقطاع ايجاد شده باعث كاهش تنش‌هاي محصور كننده در پاي ستون شده و عامل بسيار مهمي در كاهش قابل توجه شكل پذيري و ناپايداري پايه پل در هنگام زلزله خواهد بود.
 
وصله آرماتور طولي در ناحيه تشكيل مفصل خميري در پاي ستون‌هاي پل‌
 بر اساس فلسفه مورد اشاره در قسمت قبل و مطابق مقررات آيين نامه ها وصله آرماتور طولي ستون فقط در ناحيه نيمه مياني ارتفاع ستون مجاز مي باشد. لازم به توضيح است كه حداقل طول وصله 60 برابر قطر آرماتور طولي بوده و بايد ضوابط دورپيچي ويژه براي آن اعمال گردد. متاسفانه در شكل زير مشاهده مي گردد كه وصله آرماتور دقيقاً در ناحيه غير مجاز ستون قرار گرفته و آرماتورهاي دورپيچ نيز در فونداسيون قطع شده‌اند. موضوع اخير از مهمترين عوامل خرابي‌هاي مشاهده شده در زلزله ها در اكثر نقاط دنيا مي باشد.
 
 عدم تامين طول لازم براي نشيمن تيرهاي بتن مسلح پيش ساخته عرشه پل‌
 در پل‌هاي متشكل از عرشه با تيرهاي بتن مسلح پيش ساخته در كشورمان استفاده از تكيه گاه نئوپرن الاستومري براي نشيمن تيرها در محل كوله‌ها و پايه ها بسيار رايج مي باشد. انتظار مي رود در هنگام زلزله، تغيير مكان طولي پل به دليل عدم وجود ميرايي در اين نوع نشيمنگاه‌ها قابل توجه باشد. لذا آيين نامه‌ها مقرر مي‌دارند كه طول نشيمن عرشه بر روي كوله و پايه پل از حداقل ميزاني برخوردار باشد. اين مهم به دليل جلوگيري از سقوط عرشه از روي كوله و پايه به داخل دهانه مي‌باشد. متاسفانه در شكل زير مشاهده مي‌گردد كه طول مذكور رعايت نشده است. در حالي‌كه اين موضوع در هنگام تهيه نقشه هاي اجرايي و زمان اجراي كوله به راحتي و با تامين براكت در ديواره كوله امكان پذير بوده است.
 
جانمايي نادرست نئوپرن در زير تيرهاي پيش ساخته عرشه پل‌
 مطابق ضوابط آيين نامه ها، محور نئوپرن‌هاي چهارضلعي به دليل جلوگيري از اعمال فشار غير يكنواخت خارج از محور بايد بر محور تير منطبق بوده و اضلاع آن به موازات اضلاع تير باشند. متاسفانه در شكل زير مشاهده مي گردد كه هر دو مورد فوق در هنگام جانمايي نشيمن‌ها رعايت نشده و نئوپرن‌ها با خروج از مركزيت قابل توجه نصب شده‌اند. اين موضوع منجر به كاهش عمر مفيد بهره‌برداري از نئوپرن و ايجاد تنش‌هاي قابل توجه در انتهاي تير مي گردد.
 
 
عمل آوري نامناسب بتن عرشه و ايجاد ترك‌هاي انقباضي‌
در برخي موارد مشاهده مي گردد كه پيمانكاران براي عمل آوردن بتن دال عرشه از پهن نمودن گوني و مرطوب كردن آن استفاده مي نمايند. در صورت وزش باد و با توجه به وجود منافذ باز در سطح گوني، در عمل رطوبت آب به سرعت تبخير شده و در نتيجه ترك هاي سطحي فراواني در سطح دال ايجاد مي گردند. شكل زير به وضوح اين مساله را نشان مي دهد. ترك‌هاي مذكور باعث نفوذ مواد خورنده به سطح آرماتورهاي دال با پوشش كم شده كه به دنبال آن خوردگي آرماتور، پكيدن بتن اطراف آن و كاهش عمر مفيد بهره‌برداري از پل به وقوع مي پيوندد. به عنوان يك راه حل پيمانكاران مي توانند بجاي گوني يا همراه آن از نايلون هاي پلاستيكي استفاده نمايند به طوري كه بخار آب در زير پلاستيك محبوس شده و باعث عمل‌آوري بتن دال عرشه گردد. به علاوه عمليات بتن‌ريزي زماني انجام شود كه سرعت باد كم بوده و تابش شديد خورشيد وجود ندارد.
 اجراي نامناسب درزهاي انبساط‌
 يكي از مساله سازترين قسمت‌هاي پل‌ها در زمان بهره‌برداري، درزهاي انبساط پل مي باشد. هر يك از ما روزانه چندين بار ضربه وارد بر اتومبيل خود را در هنگام عبور از همين درزها تجربه مي نماييم . در شكل زير يك نمونه درز انبساط در حال اجرا نشان داده شده است. زمان اجراي درزهاي انبساط بطور معمول همزمان با بتن ريزي دال مي باشد، در اين هنگام با توجه به دقت كم لحاظ شده در اجراي درز انبساط و همچنين عدم وجود آسفالت پوششي، رويه درز و بتن اطراف آن داراي پستي بلندي هايي خواهد شد كه در هنگام اجراي آسفالت امكان اصلاح آنها وجود نخواهد داشت. لذا توصيه مي گردد محدوده درز انبساط تا زمان اجراي آسفالت پل، بتن ريزي نشده و در هنگام اجراي آسفالت با تنظيم مناسب درز و آنگاه ريختن بتن مرحله دوم از هم تراز بودن سطح درز و آسفالت اطمينان حاصل گردد. به علاوه از اجراي درزهاي فولادي با پروفيل و ورق پوششي به دليل شكست جوش‌هاي اتصالي و ايجاد مشكلات فراوان احتراز شده و به جاي آنها از درزهاي لاستيكي مسلح استفاده شود.
GetBC(12);
صفحه قبل 1 2 3 صفحه بعد
پيوندها
  • ردیاب خودرو

  • تبادل لینک هوشمند
    برای تبادل لینک  ابتدا ما را با عنوان میانبر عمران و آدرس mianbor.civil.LXB.ir لینک نمایید سپس مشخصات لینک خود را در زیر نوشته . در صورت وجود لینک ما در سایت شما لینکتان به طور خودکار در سایت ما قرار میگیرد.







ورود اعضا:

نام :
وب :
پیام :
2+2=:
(Refresh)

خبرنامه وب سایت:





آمار وب سایت:  

بازدید امروز : 48
بازدید دیروز : 0
بازدید هفته : 48
بازدید ماه : 423
بازدید کل : 231667
تعداد مطالب : 27
تعداد نظرات : 7
تعداد آنلاین : 1